OBJECTIVES: Since developing AI procedures demands significant computing resources and time, the implementation of a careful experimental design is essential. The purpose of this study was to investigate factors influencing the development of AI in orthodontics. MATERIALS AND METHODS: A total of 162 AI models were developed, with various combinations of sample sizes (170, 340, 679), input variables (40, 80, 160), output variables (38, 76, 154), training sessions (100, 500, 1000), and computer specifications (new vs. old). The TabNet deep-learning algorithm was used to develop these AI models, and leave-one-out cross-validation was applied in training. The goodness-of-fit of the regression models was compared using the adjusted coefficient of determination values, and the best-fit model was selected accordingly. Multiple linear regression analyses were employed to investigate the relationship between the influencing factors. RESULTS: Increasing the number of training sessions enhanced the effectiveness of the AI models. The best-fit regression model for predicting the computational time of AI, which included logarithmic transformation of time, sample size, and training session variables, demonstrated an adjusted coefficient of determination of 0.99. CONCLUSION: The study results show that estimating the time required for AI development may be possible using logarithmic transformations of time, sample size, and training session variables, followed by applying coefficients estimated through several pilot studies with reduced sample sizes and reduced training sessions.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.