2024 Otolaryngology--head and neck…

Machine Learning Methods in Classification of Prolonged Radiation Therapy in Oropharyngeal Cancer: National Cancer Database.

, , ,

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery Vol. 171 (6) : 1764-1772 • Dec 2024

OBJECTIVE: To investigate the accuracy of machine learning (ML) algorithms in stratifying risk of prolonged radiation treatment duration (RTD), defined as greater than 50 days, for patients with oropharyngeal squamous cell carcinoma (OPSCC). STUDY DESIGN: Retrospective cohort study. SETTING: National Cancer Database (NCDB). METHODS: The NCDB was queried between 2004 to 2016 for patients with OPSCC treated with radiation therapy (RT) or chemoradiation as primary treatment. To predict risk of prolonged RTD, 8 different ML algorithms were compared against traditional logistic regression using various performance metrics. Data was split into a distribution of 70% for training and 30% for testing. RESULTS: A total of 3152 patients were included (1928 prolonged RT, 1224 not prolonged RT). As a whole, based on performance metrics, random forest (RF) was found to most accurately predict prolonged RTD compared to both other ML methods and traditional logistic regression. CONCLUSION: Our assessment of various ML techniques showed that RF was superior to traditional logistic regression at classifying OPSCC patients at risk of prolonged RTD. Application of such algorithms may have potential to identify high risk patients and enable early interventions to improve survival.

No clinical trial protocols linked to this paper

Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.
PICO Elements

No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.

Paper Details
MeSH Terms
Associated Data

No associated datasets or code repositories found for this paper.

Related Papers

Related paper suggestions will be available in future updates.