Irreversible alveolar bone resorption is one of the important clinical manifestations of periodontitis, which is initiated by a plaque biofilm and exacerbated by the imbalance of osteoclast activity and osteogenesis, affecting a patient's masticatory function and resulting in a high recurrence rate of periodontitis. Herein, to reestablish bone homeostasis in periodontitis, a minocycline hydrochloride (MH)-loaded glycopeptide hydrogel (MH/GRW(gel)) is fabricated to mediate alveolar bone absorption through sequential antibacterial and RANKL-blocking activities. GRW(gel) shows an ECM-like fibrous and porous microstructure serving as a scaffold for cell proliferation and differentiation and holds the merits including injectability, self-healing properties, and good biocompatibility. After injection in situ, MH is released rapidly from the hydrogel in the early stage, demonstrating a potent antimicrobial effect to combat the biofilm in the deep periodontal pocket. Moreover, MH/GRW(gel) exhibits a high specific binding efficiency with RANKL to suppress osteoclast maturation by shielding the RANKL/RANK interaction and enhancing osteogenic differentiation, thereby synergistically regulating bone homeostasis. In the rat periodontitis model, MH/GRW(gel) significantly curtails periodontitis progression through antimicrobial activity, inhibition of alveolar bone resorption, and promotion of bone regeneration, which is superior to the treatment of a commercial gel. These findings suggest that MH/GRW(gel) with superiority in regulating bone homeostasis provides a promising therapeutic strategy for periodontitis.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.