OBJECTIVES: To examine whether the effectiveness of current dentin-priming approaches requiring solvated hydrophilic resins may be replicated by modifying the infiltration dynamics of neat methacrylate-based monomers into dry-etched dentin using dimethyl sulfoxide (DMSO) pretreatments. METHODS: H(3)PO(4)-etched mid-coronal dentin surfaces from human molars were air-dried for 30 s and randomly pretreated with 50 %(v/v) ethanolic DMSO for 20 or 60 s. Untreated samples and an isolated wet-bonding group served as controls. Samples were bonded with a three-step etch-and-rinse adhesive or simply with the solvent-free hydrophobic-rich resin. Restored crown segments (n = 7/group) were stored in distilled water for 24 h and sectioned for microtensile bond strength testing. Resin-dentin beams (0.8 mm(2)) were tested under tension until failure (0.5 mm/min) after 24 h or 2 years of storage in artificial saliva at 37 degrees C. Nanoleakage evaluation and hybrid layer characterization were performed by SEM. Bond strength data was examined by three-way ANOVA followed by Tukey and Dunnett's test (alpha = 0.05). RESULTS: Pretreatments significantly affected the ability of neat and solvated resins to bond to etched-dry dentin (p = 0.001). Ageing significantly lowered bond strengths depending on resin composition and DMSO-application times (p = 0.007). While hybridization of DMSO-treated dentin with the solvated resin produced no significant reductions in bond strengths after ageing (p < 0.05) improving hybrid layer integrity, direct bonding of the neat hydrophobic-rich resin matched the long-term bonding performance of the "gold standard" wet-bonding protocol (p > 0.05). SIGNIFICANCE: Lowering dentin's hydration state via DMSO-dry bonding allows direct coupling of neat methacrylate-based resins, which may contribute to developing new strategies to ultimately extend the durability of resin-dentin interfaces.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.