Periodontitis, a common chronic inflammatory condition caused by bacteria, leads to loss of attachment, resorption of alveolar bone, and ultimately tooth loss. Therefore, reducing bacterial load and fostering alveolar bone regeneration are essential components in the treatment of periodontitis. In this study, we prepared smaller-sized Ag-Metal Organic Frameworks (Ag@MOF) and loaded with sodium alginate (Alg) hydrogel for periodontitis treatment. The results showed that Ag@MOF with a smaller particle size was prepared, approximately 5.5 nm. It successfully hindered the development of Escherichia coli (E.coli) and Staphylococcus aureus (S.aureus) by disrupting bacterial intracellular metabolism, generating ROS, compromising cell membrane integrity, and preventing biofilm formation. The Ag@MOF/Alg hydrogel displayed a characteristic interconnected three-dimensional structure, along with hydrophilic and antimicrobial effects. The Ag@MOF/Alg hydrogel we developed greatly enhances the invasion and migration capabilities of endothelial cells, as well as promoting angiogenesis. In mouse models of periodontitis induced by ligature, the extent of bone loss in the jaw and the presence of cells causing inflammation in the tissues surrounding the teeth were improved in the group treated with Ag@MOF/Alg hydrogel. The levels of TNF-alpha, IL-6, and IL-1beta were significantly reduced compared to the control group. Conclusion: The experimental results prove that Ag@MOF/Alg hydrogel offers a new therapeutic approach for periodontitis.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.