2025 Dental traumatology : officia…

Automatic Vertical Root Fracture Detection on Intraoral Periapical Radiographs With Artificial Intelligence-Based Image Enhancement.

, , , , , ,

Dental traumatology : official publication of International Association for Dental Traumatology Vol. 41 (3) : 348-362 • Jun 2025

BACKGROUND/AIM: To explore transfer learning (TL) techniques for enhancing vertical root fracture (VRF) diagnosis accuracy and to assess the impact of artificial intelligence (AI) on image enhancement for VRF detection on both extracted teeth images and intraoral images taken from patients. MATERIALS AND METHODS: A dataset of 378 intraoral periapical radiographs comprising 195 teeth with fractures and 183 teeth without fractures serving as controls was included. DenseNet, ConvNext, Inception121, and MobileNetV2 were employed with model fusion. Prior to evaluation, Particle Swarm Optimization (PSO) and Deep Learning (DL) image enhancement were applied. Performance assessment included accuracy rate, precision, recall, F1-score, AUC, and kappa values. Intra- and inter-observer agreement, according to the Gold Standard (GS), were assessed using ICC and t-tests. Statistical significance was set at p < 0.05. RESULTS: The DenseNet + Inception fusion model achieved the highest accuracy rate of 0.80, with commendable recall, F1-score, and AUC values, supported by precision (0.81) and kappa (0.60) values. Molar tooth examination yielded an accuracy rate, precision, recall, and F1-score of 0.80, with an AUC of 0.84 and kappa of 0.60. For premolar teeth, the fusion network showed an accuracy rate of 0.78, an AUC of 0.78, and notable metrics, including F1-score (0.80), recall (0.85), precision (0.71), and kappa (0.55). ICC results demonstrated acceptable agreement (>/= 0.57 for molars, >/= 0.52 for premolars). CONCLUSION: TL methods have demonstrated significant potential in enhancing diagnostic accuracy for VRFs in radiographic imaging. TL is emerging as a valuable tool in the development of robust, automated diagnostic systems for VRF identification, ultimately supporting clinicians in delivering more accurate diagnoses.

No clinical trial protocols linked to this paper

Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.
PICO Elements

No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.

Paper Details
MeSH Terms
Associated Data

No associated datasets or code repositories found for this paper.

Related Papers

Related paper suggestions will be available in future updates.