Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials. After standardized polishing, samples were submerged in water for 24 h before the first surface examination using electron microscopy and profilometry. The ultrasonic scaler was applied to a specified location of each sample for 60 s under water cooling and regulated force. Post-scaler surface parameters were again examined. Following the application of the scaler, both composite materials exhibited a notable increase in surface roughness, as determined by profilometry (p < 0.01). Additionally, the observed surface roughness was also qualitatively visualized with scanning electron microscopy. While initial roughness levels were comparable across the two composites (p = 0.143) after scaler application, no substantial discrepancy in surface texture was noticed between them (p = 0.684). The use of a high-power piezoelectric ultrasonic scaler on routinely used flowable composite restorations might generate considerable surface roughness, possibly leading to increased plaque accumulation. Nevertheless, it might be postulated that nanohybrid flowable composite materials having conventional monomer ingredients may demonstrate comparable surface alterations within the limitations of this experiment.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.