This study developed an optimisation method that considers tumour thickness for modulated electron radiation treatment (MERT) at a treatment distance of 60 cm. It comprises forming a tumour bed matrix from which a transformed tumour bed matrix is derived. From the discrete tumour bed depth data, electron beam segments were extracted, which were further decomposed into sub-beams. The EGSnrc-based Monte Carlo codes BEAMnrc and DOSXYZnrc were used to model a linear accelerator and to score 3-D dose data for various field sizes (sub-beams) in a water phantom model. The use of different energy and intensity-modulated electron sub-beams to irradiate a parotid lesion was investigated by applying the developed optimisation method. After each sub-beam energy was determined, a least square cost function minimisation was invoked to deliver a minimum dose to the tumour volume and produce a set of weight factors synonymous with beam intensity modulation. This study describes a technique to derive apertures and suitable sub-beam energy to provide a method for planning a robust MERT technique that yields dose-covering results and dose spread within the tumour that aligns with literature studies.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.