OBJECTIVE: Condylar remodeling is a key prognostic indicator in maxillofacial surgery for skeletal class II patients. This study aimed to develop and validate a fully automated method leveraging landmark-guided segmentation and registration for efficient assessment of condylar remodeling. METHODS: A V-Net-based deep learning workflow was developed to automatically segment the mandible and localize anatomical landmarks from CT images. Cutting planes were computed based on the landmarks to segment the condylar and ramus volumes from the mandible mask. The stable ramus served as a reference for registering pre- and post-operative condyles using the Iterative Closest Point (ICP) algorithm. Condylar remodeling was subsequently assessed through mesh registration, heatmap visualization, and quantitative metrics of surface distance and volumetric change. Experts also rated the concordance between automated assessments and clinical diagnoses. RESULTS: In the test set, condylar segmentation achieved a Dice coefficient of 0.98, and landmark prediction yielded a mean absolute error of 0.26 mm. The automated evaluation process was completed in 5.22 s, approximately 150 times faster than manual assessments. The method accurately quantified condylar volume changes, ranging from 2.74 % to 50.67 % across patients. Expert ratings for all test cases averaged 9.62. CONCLUSION: This study introduced a consistent, accurate, and fully automated approach for condylar remodeling evaluation. The well-defined anatomical landmarks guided precise segmentation and registration, while deep learning supported an end-to-end automated workflow. The test results demonstrated its broad clinical applicability across various degrees of condylar remodeling and high concordance with expert assessments. CLINICAL SIGNIFICANCE: By integrating anatomical landmarks and deep learning, the proposed method improves efficiency by 150 times without compromising accuracy, thereby facilitating an efficient and accurate assessment of orthognathic prognosis. The personalized 3D condylar remodeling models aid in visualizing sequelae, such as joint pain or skeletal relapse, and guide individualized management of TMJ disorders.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.