The unique characteristics of cancer are crucial for comprehending the processes underlying cancer initiation, development, and maintenance. These hallmarks guide the development of novel therapeutic strategies aimed at fundamental traits of cancer, resulting in more targeted therapies with the possibility for sustained effectiveness and minimized adverse effects. Drug repurposing, a novel approach that leverages the known safety and pharmacological properties of existing drugs, has surfaced as a viable alternative to traditional drug development. This method expedites the timescale for introducing novel medicines into clinical practice, often demonstrating reduced failure rates in clinical trials. Recent data substantiates the therapeutic efficacy of many repurposed medications in the management of oral squamous cell carcinomas (OSCC), a highly aggressive and treatment-resistant malignancy. Prominent instances include metformin, phenformin, propranolol, acetylsalicylic acid, celecoxib, itraconazole, statins, dihydroartemisinin, and methotrexate. These pharmaceuticals demonstrated diverse anticancer actions, rendering them valuable tools in the therapy of OSCC. This review provides a comprehensive overview of molecular signaling in the reprocessing of drugs for OSCC.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.