Oral squamous cell carcinoma (OSCC) is the most common malignant tumor found in the head and neck region, representing a significant public health concern. The 7-methylguanylate (m7G) RNA modification is a newly recognized regulatory mechanism influencing gene expression, and methyltransferase-like 1 (METTL1) has been linked to tumor progression in various cancers; however, its specific role in OSCC remains largely unexplored. This study reveals that METTL1 expression is notably increased in OSCC and correlates with a poor prognosis for patients. Functional assays indicate that reducing METTL1 levels inhibits OSCC cell proliferation both in laboratory settings and in animal models, resulting in a G1 phase cell cycle arrest. To delve deeper into the mechanisms at play, we utilized m7G Methylated RNA Immunoprecipitation Sequencing (m7G MeRIP-seq) alongside RNA sequencing (RNA-seq) to pinpoint the downstream targets of METTL1 in OSCC cells. Our results confirm that METTL1-catalyzed m7G modification on the 5' untranslated region (5'UTR) of NEK1 mRNA enhances its stability and positively regulates NEK1 expression. Additionally, silencing NEK1 also inhibits OSCC cell proliferation, diminishes clonogenic formation, and induces G1 phase cell cycle arrest. These findings indicate that METTL1-mediated m7G modification is vital for OSCC proliferation, with NEK1 identified as a significant downstream target. In conclusion, METTL1 stands out as a potential prognostic marker and therapeutic target in OSCC, highlighting the need for further exploration of its molecular mechanisms and clinical implications.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.