Low-level laser therapy (LLLT) is gaining attention as an effective adjunct to non-surgical periodontal treatment. This study evaluates the potential of LLLT to reduce bacterial load in a clinically relevant in vitro subgingival biofilm model and its impact on the inflammatory response. A subgingival biofilm model consisting of seven bacterial species was established. Primary human gingival fibroblasts (GFs) and periodontal ligament cells (PDLs) were cultured. Both biofilms and host cells were treated with the DenLase Diode Laser (980 nm) under various clinically relevant settings. The composition and structure of the seven-species biofilms were evaluated using quantitative PCR and fluorescence microscopy, respectively. The inflammatory response in host cells was analyzed by measuring the gene and protein expression levels of various inflammatory mediators. Laser treatment at power outputs ranging from 0.3 to 2 W had no significant effect on biofilm composition or architecture. LLLT, particularly at higher power settings, reduced the viability in both GFs and PDLs up to 70%. Gene expression levels of inflammatory mediators were only minimally influenced by laser treatment. However, LLLT significantly decreased the secretion of all examined cytokines. These findings suggest that LLLT with a 980 nm diode laser, under clinically relevant conditions, exerts anti-inflammatory rather than antimicrobial effects.
No clinical trial protocols linked to this paper
Clinical trials are automatically linked when NCT numbers are found in the paper's title or abstract.PICO Elements
No PICO elements extracted yet. Click "Extract PICO" to analyze this paper.
Paper Details
MeSH Terms
Associated Data
No associated datasets or code repositories found for this paper.
Related Papers
Related paper suggestions will be available in future updates.